2. Light/matter interaction (光和物質的相互作用)

Light/matter interaction

{ Light absorption (光吸収)
Light emission (發光)
Light scattering (光零乱)

2.1 Resonance energy transfer (共振能量転移)

Coupled Pendulums

2.

Pendulum frequency in *classical mechanics* V

$$\nu = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$$

g : gravitational acceleration

l : string length

Pendulum frequency in *quantum mechanics*: Eigen frequency of an electron in a steady state

Energy transfer occurs only between two pendulums with the same frequency 能量転移可能在共振的時候

Light absorption/emission occurs only between two electrons with the same frequency

2.2 Light absorption (induced absorption)

Light having the frequency same as the eigen frequency of an electron is absorbed.

A : absorbance

$$\epsilon(\nu) = \frac{\sigma(\nu)N_A}{10^3 \ln 10} = 2.6 \times 10^{20} \sigma(\nu)$$

 N_A : Abogadoro number $\sigma(v)$: absorption cross section

 cm^2

<u>A</u>bsorption cross section (吸収截面積)

Strongly absorbing molecule

$$\sigma \sim 10^{-16} \mathrm{cm}^2 = 1 \mathrm{\AA}^2 \qquad \epsilon \sim 10^4$$

2.3 Light emission

{ Induced emission (受激發射)
Spontaneous emission (自發輻射)

Induced emission

Spontaneous emission

Dynamics of a two-level system interacting with light

- P: probability per second
 - *P*₁₂: induced absorption (受激吸収) *P*₂₁: induced emission (受激發射) *P*'₂₁: spontaneous emission (自發輻射) *P*''₂₁: non-radiative de-activation (無輻射失活)

$$P_{12} = P_{21} = B\rho(v_0) \qquad B : \text{Einstein B coefficient}$$
$$B = \frac{2\pi^2}{3\epsilon_0 h^2} |\langle 2 | \mu | 1 \rangle|^2$$

 $\langle 2 | \mu | 1 \rangle$: transition dipole moment

 $\rho(v_0)$: radiation energy density $J m^{-3} (s^{-1})^{-1}$ $\propto I$: incident light intensity

$$I = c \int \rho(v) dv \quad J \text{ m}^{-2} \text{s}^{-1}$$

 $P'_{21} = A = \frac{1}{\tau_r}$ A: Einstein A coefficient, τ_r : radiative lifetime

$$A = \frac{16\pi^3 v_0^3}{3\epsilon c_0 h} |\langle 2 | \mu | 1 \rangle|^2 \qquad \qquad \frac{A}{B} = \frac{8\pi h v_0^3}{c_0^3}$$

 $P_{21}'' = \frac{1}{\tau_{nr}}$ τ_{nr} : non-radiative lifetime (reaction, energy transfer, etc.)

Time-dependent population changes with interaction with light

$$\frac{dN_2}{dt} = P_{12}N_1 - P_{21}N_2 - P'_{21}N_2 - P''_{21}N_2$$

= $B\rho(\nu_0)(N_1 - N_2) - \frac{1}{\tau}N_2$
 τ : lifetime of level 2 $\frac{1}{\tau} = \frac{1}{\tau_r} + \frac{1}{\tau_{nr}}$

Isomerization rates of S1 trans-stilbene in different solvents

Light scattering

Absorption and emission occur simultaneously.

Stokes Raman scattering

3. Born-Oppenheimer Approximation

3.1 Separation of electronic and nuclear motions (電子的運動和核的運動的分離)

Electron:
$$m_e = 9.1 \times 10^{-31} \text{kg}$$

Proton: $m_p = 1.67 \times 10^{-27} \text{kg}$
 $\frac{m_p}{m_e} = 1.8 \times 10^3$

Molecular Hamiltonian

$$H = -\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} \nabla^2_{\mathbf{R}_{\alpha}} - \sum_{i} \frac{\hbar^2}{2m_e} \nabla^2_{\mathbf{r}_i} - \sum_{\alpha} \sum_{i} \frac{Z_{\alpha}e^2}{r_{\alpha i}} + \sum_{i < i} \frac{e^2}{r_{ij}} + \sum_{\alpha < \beta} \frac{Z_{\alpha}Z_{\beta}e^2}{R_{\alpha\beta}}$$
Nucleus Electro Attraction between nucleus and electron Repulsior among nuclei

 M_{α} : Mass of nucleus α

- $\nabla_{\mathbf{R}_{\alpha}}$: Differentiation with respect to the coordinate of nucleus α
- M_e : Mass of electron
- $\nabla_{\mathbf{r}_i}$: Differentiation with respect to the coordinate of electron *i*
- \mathcal{C} : Charge of electron
- Z_lpha : Atomic number of nucleus lpha
- $\mathcal{V}_{\alpha i}$: Distance between nucleus α and electron i
- r_{ij} : Distance between electron i and electron j

 $R_{lphaeta}$: Distance between nucleus lpha and nucleus eta

cf. $H = p^2/2m + V$, $p = -i\hbar d/dq (qp-pq=i\hbar)$

$$H\psi = E\psi$$
NOT solvable! (不能解!)

Adiabatic approximation (絕熱近似)

$$H(\nabla_{\mathbf{R}_{\alpha}}, \nabla_{\mathbf{r}_{i}}, \mathbf{R}_{\alpha}, \mathbf{r}_{i})\psi(\mathbf{R}_{\alpha}, \mathbf{r}_{i}) = E\psi(\mathbf{R}_{\alpha}, \mathbf{r}_{i})$$

Differential equation with respect to \mathbf{R}_{α} and \mathbf{r}_{i}

Adiabatic approximation

$$\nabla_{\mathbf{R}_{\alpha}} = 0$$
 \mathbf{R}_{α} fixed

$$H_e(\nabla_{\mathbf{r}_i}, \mathbf{R}_{\alpha}, \mathbf{r}_i)\psi_e(\mathbf{R}_{\alpha}, \mathbf{r}_i) = E_e(\mathbf{R}_{\alpha})\psi_e(\mathbf{R}_{\alpha}, \mathbf{r}_i)$$
$$H_e = H + \sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} \nabla_{\mathbf{R}_{\alpha}}^2$$

Differential equation with respect to \mathbf{r}_i Fixed parameter \mathbf{R}_{α}

Obtain an adiabatic solution

1) Assume that
$$H_e \psi_e = E_e \psi_e$$
 is solved.
Energy $E_e^l(\mathbf{R}_{\alpha})$
Eigen function $\psi_e^l(\mathbf{R}_{\alpha}, \mathbf{r}_i)$

$$H_e \psi_e^l(\mathbf{R}_{\alpha}, \mathbf{r}_i) = E_e^l(\mathbf{R}_{\alpha}) \psi_e^l(\mathbf{R}_{\alpha}, \mathbf{r}_i)$$

$$l : \text{quantum number}$$

2) Expand $\psi(\mathbf{R}_{\alpha},\mathbf{r}_{i})$ into a power series of $\psi_{e}^{l}(\mathbf{R}_{\alpha},\mathbf{r}_{i})$

$$\psi(\mathbf{R}_{\alpha}, \mathbf{r}_{i}) = \sum_{l} \psi_{e}^{l}(\mathbf{R}_{\alpha}, \mathbf{r}_{i})\phi_{n}^{l}(\mathbf{R}_{\alpha})$$
$$\phi_{n}^{l}(\mathbf{R}_{\alpha}): \text{ expansion coefficient}$$

3) Introducing into Schrödinger equation

$$H = H_e - \sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} \nabla_{\mathbf{R}_{\alpha}}^2$$

$$H\psi = E\psi$$

4) Multiply $\psi_e^{l'}(\mathbf{R}_{\alpha},\mathbf{r}_i)^*$ from the left-hand side and integrate over \boldsymbol{r}

$$\int \psi_e^{l'}(\mathbf{R}_{\alpha}, \mathbf{r}_i)^* \psi_e^{l}(\mathbf{R}_{\alpha}, \mathbf{r}_i) d\mathbf{r}_i = \delta_{ll'}$$

$$\sum_{l} \int \psi_e^{l'} \Big(-\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} \nabla_{\mathbf{R}_{\alpha}}^2 \Big) \psi_e^{l} \phi_n^{l} d\mathbf{r} + \sum_{l} E_e^{l} \int \psi_e^{l'*} \psi_e^{l} \phi_n^{l} d\mathbf{r}$$

$$= E \sum_{l} \int \psi_e^{l'*} \psi_e^{l} \phi_n^{e} d\mathbf{r}$$

$$\sum_{l} \int \psi_e^{l'} \Big(-\sum_{\alpha} \frac{\hbar^2}{2M_{\alpha}} \nabla_{\mathbf{R}_{\alpha}}^2 \Big) \psi_e^{l} \phi_n^{l} d\mathbf{r} + E_e^{l'} \phi_n^{l'} = E \phi_n^{l'}$$

5) Born-Oppenheimer approximation

$$\nabla_{\mathbf{R}_{\alpha}} \psi_{e}^{l}(\mathbf{R}_{\alpha}, \mathbf{r}_{i}) = 0$$

$$\int_{\psi_{e}^{l}} \text{ does not change with a small change of } \mathbf{R}_{\alpha}$$

$$\nabla_{\mathbf{R}_{\alpha}}^{2}\psi_{e}^{l}\phi_{n}^{l} = \nabla_{\mathbf{R}_{\alpha}}\{(\nabla_{\mathbf{R}_{\alpha}}\psi_{e}^{l})\phi_{n}^{l} + \psi_{e}^{l}\nabla_{\mathbf{R}_{\alpha}}\phi_{n}^{l}\}$$
$$= \psi_{e}^{l}\nabla_{\mathbf{R}_{\alpha}}^{2}\phi_{n}^{l}$$

$$-\sum_{l} \underbrace{\int \psi_{e}^{l'*} \psi_{e}^{l} d\mathbf{r}}_{\delta_{ll'}} \sum_{\alpha} \frac{\hbar^{2}}{2M_{\alpha}} \nabla_{\mathbf{R}_{\alpha}}^{2} \phi_{n}^{l} + E_{e}^{l'} \phi_{n}^{l'} = E \phi_{n}^{l'}$$
$$-\sum_{\alpha} \frac{\hbar^{2}}{2M_{\alpha}} \nabla_{\mathbf{R}_{\alpha}}^{2} \phi_{n}^{l'}(\mathbf{R}_{\alpha}) + E_{e}^{l'}(\mathbf{R}_{\alpha}) \phi_{n}^{l'}(\mathbf{R}_{\alpha}) = E \phi_{n}^{l'}(\mathbf{R}_{\alpha})$$

Electronic and nuclear motions are separated! (電子的運動和核的運動分離!)

3.2 Separation of vibrational, rotational and translational motions

A diatomic molecule

Hamiltonian H_n

$$H_{n} = -\frac{\hbar^{2}}{2M_{1}} \nabla_{\mathbf{R}_{1}}^{2} - \frac{\hbar^{2}}{2M_{2}} \nabla_{\mathbf{R}_{2}}^{2} + E_{e}(\mathbf{R}_{1}, \mathbf{R}_{2})$$

$$= -\frac{\hbar^{2}}{2M_{1}} \nabla_{\mathbf{R}_{1}}^{2} - \frac{\hbar^{2}}{2M_{2}} \nabla_{\mathbf{R}_{2}}^{2} + E_{e}(R_{12}) \qquad R_{12} = |\mathbf{R}_{12}|$$

$$M_{12} = \mathbf{R}_{1} - \mathbf{R}_{2}$$

$$R_{1} = \frac{\mathbf{R}_{1}}{\mathbf{R}_{2}} \xrightarrow{\mathbf{R}_{2}} \mathbf{R}_{12} = \mathbf{R}_{1} - \mathbf{R}_{2}$$

$$R = \frac{M_{1}\mathbf{R}_{1} + M_{2}\mathbf{R}_{2}}{M_{1} + M_{2}}$$

$$H_{n} = -\frac{\hbar^{2}}{2(M_{1} + M_{2})} \nabla_{R}^{2} - \frac{(M_{1} + M_{2})\hbar^{2}}{2M_{1}M_{2}} \nabla_{\mathbf{R}_{12}}^{2} + E_{e}(R_{12})$$

$$\frac{M_{1} + M_{2}}{M_{1}M_{2}} = \frac{1}{\mu} \mu$$

$$M_{t} \text{ (translation)} \text{ vibration and rotation}$$

Schrödinger equation for vibration and rotation

Rigid body approximation (neglecting vibration-rotation interaction)

 $\frac{\tilde{L}^2}{2\mu r^2} = \frac{\tilde{L}^2}{2\mu r_0^2} \qquad r_0: \text{ interatomic distance at the potential minimum}$

$$H_{rv} = -\frac{\hbar^2}{2\mu} \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + E_e(r) + \frac{\tilde{L}^2}{2\mu r_0^2}$$
vibration rotation

$$H_{rv}\phi(r,\theta,\phi) = E_{rv}\phi(r,\theta,\phi)$$

$$\int \phi(r,\theta,\phi) = \phi_v(r)Y_l^m(\theta,\phi)$$

$$\left(\frac{\tilde{L}^2}{2\mu r_0^2}Y_l^m(\theta,\phi) = \frac{1}{2\mu r_0^2}l(l+1)\hbar^2Y_l^m(\theta,\phi)\right)$$

$$\left(-\frac{\hbar^2}{2\mu}\frac{1}{r^2}\left(r^2\frac{\partial}{\partial r}\right) + E_e(r) + \frac{l(l+1)\hbar^2}{2\mu r_0}\right)\psi_v^l(r) = E_{rv}^l\psi_v^l(r)$$